
Correct By Costruction
(Casper)

-Implementation in
RChain-

by Patrick Udo Kraenzien

1.1 Overview and Introduction - Disclaimer

Disclaimer
I Am only a Messenger

Short overview CBC.

The Correct by Construction Casper Protokoll:
(short intro)
● Introduced By Vlad Zamfir's intententionally ment

For the Ethereum Network
● Belongs to family of Proof-of-Stake protocols
● Validators bet on new blocks with their stake
● Introduces Slashing as punishment
● Solves the “Nothing at Stake” Problem by

○ Punishing validators with malicious betting behavior
get by slashing there Stake

○ Punishing none-perfoming (offline) validators

CBC Casper in RChain - Structur

● Bonding
● Unboding
● Slashing

Top-Level PoS Contract

Region2Region1 RegionN... ● Distribution of
Rewards

assigned
Active

Validator

assigned
“queued”
validator

CBC Casper in RChain - Properties of a Region

Regions are self defined at creation by:

● The max. number of active validators
● The max. number of “queued” validators
● The max unbounding rate (N validators per 100 blocks)
● The post-unbounding stake holding time (in blocks)
● The minimum bond amount
● The maximum bond amount
● Cryptographic evidence for Proof-of Performance (joining and

slashing

This information is known by the PoS-Contract

Region

CBC Caser in RChain - Bonding Part 1

Future Validator invokes the PoS-Contract
by providing:
● The region they want to join
● A form of cryptographic ID (e.g. public key)
● A purse
● Cryptographic evidence as needed by

region

Future
Validator

PoS
Contract

Invokes
with message

m(ai)

checks content
of message

CBC Casper in RChain - Bonding Part 2

PoS-Contract checks the content of message:
● Autom. rejects if purse is empty
● “Queues” Validator if number

of max. Validators is reached
→ stops evaluation

● Evaluates cryptographic evidence
→ rejects & deduces tokens
if invalid

PoS
Contract

m(ai) checking
purse

empty

rejection

checking
Region

population

Queuing
of

Applicant

Max. Val.
reached

checking
crypt. proof

Tokens are
deduced

and
rejection

invalid

validfreevalid

CBC Casper in RChain - Bonding Part 3

Checking
bond/stake

amount

invalid

rejection

Acceptance:
● Tokens are bound
● Validator and Weights

Are crypt. Documented
→ parent block

● Validator is added to
region and PoS-
Contract

valid valid

When bond amount is within the defined limit of the region (min./max.
bound)the validator is accepted.

Note: The second evaluation of the purse compares amount to the local
contract -the first not. → avoidance of DoS-Attacks

CBC Caser in RChain - Unbonding Part 1

Future Validator invokes the PoS-Contract
by providing:
● A signature with the block after which he

wants to unbond
● A channel at which he will later receive

His stake back

Validator
PoS

Contract
Invokes unbond
with message

m(ai)

checks content
of message

CBC Casper in RChain - Unbonding Part 1

Note:
● During the Post-Stake time the ex-validator’s stake is still slashable
● If Bond of validator is 0 or out of the local’s contract range an automatic

Unbonding is triggered
● Rewards are not paid out by the top level PoS-Contract
● The Post-Stake time reduces the risk of “long range attacks”

PoS
Contract

m(ai)
checking

unbonding
rate of
region

exceeded

rejection

Unsigning
Validator

A “queued”
Validator
fills his
place

Post-Staking
 time

valid PoS Contract sends
purse to ex-validator

Returned amount is
Stake minus Slashed
amount.

CBC Caser in RChain - Slashing

Slashing Validator provides:
● ID of the offender (validator B)
● Signature of the accusor (validator A)
● Offence descriptor
● Cryptographic evidence of the

offence
● A purse return channel

Validator
A

PoS
Contract

Invokes slash
with message

m(ai)

checks content
of message

checking
evidence

Accused Validator B
is slashed

Validator A gets
purse with slashed

amount

Validator A bond is
deduced

valid

invalid

Pro: Economic incentive for slashing other
validators

Con: Possible unbonding through backdoor

CBC Casper in RChain - Slashable Events

Slashable Events:

● Breach of Service-Level-Agreement (SLA)
(SLA’s are region-specific)

● Production of an invalid block

● Equivocation
Validators sends two contradicting (signed), which can not be
causally ordered

slashing

CBC Caser in RChain - Rewarding : Updating Reward Balance

Validator invokes the
local PoS-Contract
by providing:
● A signature

Validator
Local
PoS

Contract

Invokes Update
with message

m(ai)

checks content
of message

Updates
Validators
Balance

valid

The Balances are updated byq:

Reward = Discount * transactionFees

The Discount-Faktor decreases with increasing
consecutive blocks pubplished by the validator
→ incentive for cooperation with other validators

CBC Caser in RChain - Rewarding : Reward Payout

Validator invokes the
local PoS-Contract
by providing:
● Validator ID
● Purse Return Channel

Ex-
Validator

Local
PoS

Contract

Invokes Payout
with message

m(ai)

valid
Payout of rewards
By sending a
purse to the return
channel

checking
valid

rejection

invalid

CBC Caser in RChain - Rewarding : Reward Payout

Validator are betting:

● Validator ID
● Purse Return Channel

Validator
Local
PoS

Contract

Gives
Proposition

Payout of rewards
By sending a
purse to the return
channel

checking
valid

rejection

invalid

Validators are betting on propositions
Like on the sequence/order of blocks
Rather than on single blocks.
→ higher transaction rate

End

https://medium.com/rchain-cooperative/a-visualization-for-t
he-future-of-blockchain-consensus-b6710b2f50d6

	Correct By Costruction (Casper) -Implementation in RChain-
	Slide 2
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

